
Minimal Spanning Trees in Graph Theory:
Applications in resource optimization.
Jean Batista
Juniata College

Introduction to Minimal Spanning Trees

A minimum spanning tree (MST) is a fundamental concept in graph theory and combinatorial

optimization. The MST problem is one of the oldest and most studied problems in computer

science, with a history dating back to the 1920s (Graham & Hell, 1985). In an MST problem, we

are given a set of points (called vertices) connected by links (called edges) that have associated

weights or costs. The goal is to select a subset of these links that connects all the points together

with the smallest possible total cost. In other words, an MST is a tree (a cycle-free connected

subgraph) that spans all vertices of a weighted graph and has the minimum achievable sum of

edge weights (Cormen, Leiserson, Rivest, & Stein, 2009).

Several classic algorithms exist for finding an MST in a graph. In this paper, we focus on two

well-known greedy algorithms: Prim’s algorithm (Prim, 1957) and Kruskal’s algorithm (Kruskal,

1956). Both algorithms build the minimum spanning tree by incrementally adding edges that

preserve the minimality and connectivity properties, but they do so in different ways. We will

describe each algorithm in detail with step-by-step explanations. We also provide a case study

demonstrating how each algorithm works on an example graph, and we discuss some real-world

applications of MSTs.

Graph Theory Background

Graphs and Spanning Trees: In graph theory, a graph represents a collection of objects and the

connections between them. The objects are usually called vertices (or nodes), and the

connections are called edges. For example, imagine a set of cities with roads between them –

each city can be thought of as a vertex, and each road as an edge connecting two cities. A graph

can be visualized as a set of points (vertices) with lines (edges) drawn between certain pairs of

points. When each edge has an associated number (for instance, a distance or cost), we call the

graph a weighted graph. An edge’s weight typically represents how expensive or long that

connection is.

A spanning tree of a graph is a subset of the edges that connects all the vertices together without

any cycles. Connecting all vertices means every vertex in the graph is reached by the edges in

the spanning tree. Having no cycles means that there is no way to start at one vertex and follow a

series of edges that eventually loops back to the starting point – in other words, there is exactly

one path between any two vertices in a tree. A spanning tree thus “spans” the graph (touches all

vertices) and is a “tree” in the graph-theoretic sense (it has no loops). For a given graph with N

vertices, any spanning tree will have exactly N-1 edges (since adding any additional edge would

create a cycle). There can be many different spanning trees possible for the same graph,

especially if the graph is highly connected.

Minimum Spanning Tree (MST) Definition: When a graph has weights on its edges, each

spanning tree has a total weight which is the sum of the weights of all the edges in that tree. A

minimum spanning tree is defined as a spanning tree whose total weight is the smallest

among all possible spanning trees of the graph (Cormen et al., 2009). In plain terms, it is the

cheapest way to connect all the vertices. If you think of the vertices as cities and edges as

possible roads with construction costs, a minimum spanning tree would be the network of

roads that connects all cities for the lowest total cost.

It is important to note that the minimum spanning tree of a graph is not necessarily unique –

there can be more than one spanning tree tying for the same minimum total weight if the graph

has multiple edges with equal weights. However, if all edge weights are distinct (no ties), then

there will be exactly one unique minimum spanning tree for the graph (Kruskal, 1956). Finding

an MST is a classic optimization problem, and many algorithms have been developed to solve it

efficiently. Next, we describe two primary algorithms for constructing an MST, known for their

greedy strategy (they build the solution step by step, always choosing the next optimum local

step): Prim’s algorithm and Kruskal’s algorithm.

Prim’s Algorithm

Prim’s algorithm is a greedy method that builds a minimum spanning tree by expanding outward

from a starting vertex. The idea is to grow a single tree by always adding the least expensive

edge that connects a vertex in the current tree to a vertex outside the tree, until all vertices are

included. This approach was originally discovered by Vojtěch Jarník in 1930 and later

independently by Robert Prim in 1957 (Graham & Hell, 1985). It is commonly known simply as

Prim’s algorithm. We will explain Prim’s algorithm in a step-by-step manner:

1. Start with an arbitrary vertex: Begin with an empty set of edges and pick any one

vertex to start the tree. At the start, the spanning tree consists of just this single vertex and

no edges. (Because a single vertex by itself has no connecting edges yet, it is trivially a

tree on its own.)

2. Find the smallest edge from the tree to a new vertex: Look at all the edges that connect

the vertices already in the tree to those vertices not yet in the tree. Out of all these

candidate edges, find the one with the smallest weight (the least cost). Because the tree

initially has only one vertex, this step will simply pick the shortest edge emanating from

that starting vertex to any other vertex.

3. Add the smallest edge to the tree: Take the minimum-weight edge identified in the

previous step and include it in the spanning tree. This will bring one new vertex (the one

that was connected by that edge) into the tree. Now the spanning tree has one more vertex

than before, and one edge connecting that new vertex to the rest of the tree.

4. Repeat the process: Now that the tree has grown, repeat the selection process. At each

iteration, consider all edges that connect any vertex in the current tree to any vertex

outside the current tree. Again, choose the edge with the smallest weight among these.

Add that edge and the new vertex it leads to into the spanning tree. Ensure that no cycles

are formed – by always connecting to a vertex that was previously “outside” the tree,

Prim’s algorithm inherently avoids creating cycles.

5. Continue until spanning tree is complete: Keep repeating step 4 until all vertices are

included in the spanning tree. When the algorithm terminates, we will have added N1

edges for N vertices, and all vertices will be connected in a tree structure.

Kruskal’s Algorithm

Kruskal’s algorithm is another greedy strategy for finding a minimum spanning tree, but it

operates in a different manner. Instead of growing a single tree from a starting vertex, Kruskal’s

method builds the spanning tree gradually by considering all the edges in order of increasing

weight and choosing the cheapest edges that do not form a cycle. This algorithm was introduced

by Joseph Kruskal in 1956 and has since become a standard approach to the MST problem

(Kruskal, 1956). The outline of Kruskal’s algorithm in plain English is as follows:

1. Sort all edges by weight: Begin by examining all the edges in the graph and sorting them

from the smallest weight to the largest weight. This gives an ordered list of candidate

edges, starting with the most inexpensive connections.

2. Start with an empty edge set: Initially, the spanning tree is empty – no edges have been

chosen yet. We will gradually add edges from the sorted list to this set, making sure we

never form a cycle.

3. Add edges in increasing order: Iterate through the sorted list of edges, from lowest

weight to highest:

o For each edge, check if including that edge in the current set would create a cycle

among the vertices that are already connected by the chosen edges.

o If adding the edge does not form a cycle, accept this edge and add it to the

spanning tree. If adding the edge would form a cycle, then skip this edge (do not

add it), because including it would violate the tree structure.

4. Use a union-find structure to detect cycles (conceptually): As we add edges, we keep

track of which vertices are connected together. One efficient way to do this in practice is

by using a disjoint set union–find data structure, which can quickly tell whether two

vertices are already in the same connected component (Cormen et al., 2009). In simple

terms, the algorithm keeps track of groups of vertices that are connected by the chosen

edges so far. When considering a new edge, we can determine if its two endpoints are

already connected indirectly through the existing chosen edges. If they are, then adding

this edge would create a loop. If they are not, the edge is safe to add.

5. Continue until spanning tree is complete: Continue scanning through the sorted edges,

adding those that are safe (non-cycling). Eventually, once we have added enough edges

such that all vertices are connected, the process stops. At that point, we will have a

spanning tree. Just like before, for N vertices we will stop when we have N-1 edges

chosen. Any remaining edges (usually the heavier ones or those creating cycles) can be

disregarded.

By the end of Kruskal’s algorithm, we have built a minimum spanning tree by always taking the

next smallest edge that does not violate the tree conditions. The greedy choice at each step

(taking the next smallest possible connection) is guaranteed to produce an MST due to the cut

and cycle properties of spanning trees (Kruskal, 1956). In essence, Kruskal’s algorithm exploits

the fact that any valid MST must include the lightest edge connecting any partition of the

vertices; conversely, a heaviest edge in a cycle can never be in the MST. Thus, by always

choosing the globally smallest remaining edge and avoiding cycles, Kruskal’s method ensures an

optimal result.

In summary, Prim’s and Kruskal’s algorithms both find the minimum spanning tree by a series of

greedy steps, but Prim’s builds from a single starting point and grows a tree, while Kruskal’s

picks edges in global sorted order and builds a forest that eventually becomes a single tree. Both

will be illustrated in the following case study.

Case Study: Example Construction of an MST

To better understand how Prim’s and Kruskal’s algorithms work in practice, let us consider a

concrete example. Imagine we have a small network (graph) of five locations labeled A, B, C, D,

and E. Suppose these locations are connected by roads with varying distances (or costs). We will

describe the graph by listing the connections and their weights:

• A is connected to B with a road of cost 3.

• A is connected to C with a road of cost 1.

• A is connected to D with a road of cost 4.

• B is connected to C with a road of cost 2.

• B is connected to D with a road of cost 5.

• B is connected to E with a road of cost 6.

• D is connected to E with a road of cost 8.

Figure 1 shows a diagram

of this weighted graph with

all five vertices and the

seven edges connecting

them (with the numbers

indicating the weight or cost

of each edge).

Our goal is to find the

minimum spanning tree of

this graph – that is, to

select the subset of these roads that connects all five locations with the smallest total cost. We

will apply Prim’s algorithm and Kruskal’s algorithm to this graph step by step, and verify that

both methods arrive at the same final MST (as they should).

Prim’s Algorithm on the Example:

Step Edge Weight Tree Vertices After Step Total Weight

0 – Start Start at A {A} 0

1 A – C (1) {A, C} 1

2 C – B (2) {A, B, C} 3

3 A – D (4) {A, B, C, D} 7

4 B – E (6) {A, B, C, D} 13

Prim’s algorithm has now finished, producing a spanning tree with edges {A–C, B–C, A–D, B–

E}. It is easy to verify that this is indeed a tree (it connects all vertices and has no cycles) and

that its total cost is 13. We should also check that this is minimum – there is no other way to

connect all five vertices with a total cost less than 13. If we inspect the chosen edges, we see that

at each step Prim’s algorithm picked the smallest possible connecting edge, and it avoided

adding the edges A–B and B–D because at the moments they were considered, those edges

would have connected vertices that were already indirectly connected in the tree (which would

have created a cycle). The final set of edges is the result of this greedy growth process.

Kruskal’s Algorithm on the Example:

Now, let us apply Kruskal’s algorithm to the same graph and see how the edges are selected in

increasing order of weight:

• Sorting edges by weight: First, list all the edges with their costs and sort them from

smallest to largest:

1. A–C (cost 1) – smallest

2. B–C (cost 2)

3. A–B (cost 3)

4. A–D (cost 4)

5. B–D (cost 5)

6. B–E (cost 6)

7. D–E (cost 8) – largest

Step Edge

Weight

Action Edge Set Running Total Cost

0 – Start Start N/A N/A 0

1 A – C (1) Add {A – C} 1

2 B – C (2) Add {A – C, B – C} 3

3 A – B (3) Skip (would

form cycle A –

B – C – A)

{A – C, B – C} 3

4 A – D (4) Add {A – C, B – C, A –

D}

7

5 B – D (5) Skip (Cycle) {A – C, B – C, A –

D}

7

6 B – E (6) Add {A – C, B – C, A –

D, B – E}

13

7 D – E (8) Skip (Tree

already

completed)

{A – C, B – C, A –

D, B – E}

13

Figure 2 demonstrates that

both algorithms, Prim’s and

Kruskal’s, arrive at the

same minimum spanning

tree for the example graph,

albeit through different

processes.

Prim’s algorithm added

edges one by one by

always extending the

current tree with the

cheapest outgoing edge, while Kruskal’s algorithm picked edges in a global sorted order and

avoided cycles. The final MST includes the connections from A to C, C to B (connecting A–B–C

in a triangle but we exclude the heavier A–B edge), plus the connections from A to D and from B

to E. Any other combination of roads connecting all cities would have equal or higher total cost

than these selected ones. This example validates the correctness of both algorithms and provides

a clear, step-by-step narrative of how each operates without the need for complex notation.

Warehouse Case Study

In a warehouse case study, Prim’s minimum spanning tree (MST) algorithm was applied to

design optimal picking routes connecting all required pick locations with the shortest possible

total distance. By eliminating unnecessary travel through a minimal spanning network, the

distance that order-picking trucks needed to drive was drastically reduced (e.g., a drop of 466

meters, from 693.3 m to 227.2 m, in one optimized picking round). This ~67% reduction in travel

distance translated directly into faster picking times and lower energy consumption for the

electric forklifts. Consequently, the optimized MST routes cut greenhouse gas emissions

significantly – the case study reported an avoidance of approximately 234 kg of CO₂ for the

consolidated picking scenario. In summary, using Prim’s MST to streamline warehouse picking

paths yielded substantial improvements in operational efficiency (shorter routes and times) while

reducing energy usage and emissions, supporting more sustainable warehouse operations.

Conclusion

Minimum spanning trees are a fundamental concept in graph theory and have proven to be vitally

important for efficient network design. They ensure that all required nodes are connected with

the smallest possible total connection cost or distance, making them highly valuable for solving

real-world infrastructure problems. Effective greedy algorithms such as Prim’s and Kruskal’s

enable rapid computation of MSTs even for large graphs, each finding an optimal spanning

network in roughly $O(E \log V)$ time. By using these algorithms, planners can obtain minimal-

connectivity solutions that avoid wasteful routes or links. The case studies and examples

discussed demonstrate that MST-based strategies consistently reduce costs and often decrease

environmental impact across diverse domains – from optimizing warehouse pick paths to

designing telecommunications, transportation, logistics, and utility networks. In summary,

minimum spanning trees provide a powerful, concise framework for building efficient and

sustainable connectivity in complex systems, combining theoretical optimality with tangible

business and environmental benefits.

