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Introduction to Minimal Spanning Trees 

A minimum spanning tree (MST) is a fundamental concept in graph theory and combinatorial 

optimization. The MST problem is one of the oldest and most studied problems in computer 

science, with a history dating back to the 1920s (Graham & Hell, 1985). In an MST problem, we 

are given a set of points (called vertices) connected by links (called edges) that have associated 

weights or costs. The goal is to select a subset of these links that connects all the points together 

with the smallest possible total cost. In other words, an MST is a tree (a cycle-free connected 

subgraph) that spans all vertices of a weighted graph and has the minimum achievable sum of 

edge weights (Cormen, Leiserson, Rivest, & Stein, 2009).   

Several classic algorithms exist for finding an MST in a graph. In this paper, we focus on two 

well-known greedy algorithms: Prim’s algorithm (Prim, 1957) and Kruskal’s algorithm (Kruskal, 

1956). Both algorithms build the minimum spanning tree by incrementally adding edges that 

preserve the minimality and connectivity properties, but they do so in different ways. We will 

describe each algorithm in detail with step-by-step explanations. We also provide a case study 

demonstrating how each algorithm works on an example graph, and we discuss some real-world 

applications of MSTs.   

Graph Theory Background  

Graphs and Spanning Trees: In graph theory, a graph represents a collection of objects and the 

connections between them. The objects are usually called vertices (or nodes), and the 

connections are called edges. For example, imagine a set of cities with roads between them – 

each city can be thought of as a vertex, and each road as an edge connecting two cities. A graph 

can be visualized as a set of points (vertices) with lines (edges) drawn between certain pairs of 

points. When each edge has an associated number (for instance, a distance or cost), we call the 

graph a weighted graph. An edge’s weight typically represents how expensive or long that 

connection is.  



A spanning tree of a graph is a subset of the edges that connects all the vertices together without 

any cycles. Connecting all vertices means every vertex in the graph is reached by the edges in 

the spanning tree. Having no cycles means that there is no way to start at one vertex and follow a 

series of edges that eventually loops back to the starting point – in other words, there is exactly 

one path between any two vertices in a tree. A spanning tree thus “spans” the graph (touches all 

vertices) and is a “tree” in the graph-theoretic sense (it has no loops). For a given graph with N 

vertices, any spanning tree will have exactly N-1 edges (since adding any additional edge would 

create a cycle). There can be many different spanning trees possible for the same graph, 

especially if the graph is highly connected.  

Minimum Spanning Tree (MST) Definition: When a graph has weights on its edges, each 

spanning tree has a total weight which is the sum of the weights of all the edges in that tree. A 

minimum spanning tree is defined as a spanning tree whose total weight is the smallest 

among all possible spanning trees of the graph (Cormen et al., 2009). In plain terms, it is the 

cheapest way to connect all the vertices. If you think of the vertices as cities and edges as 

possible roads with construction costs, a minimum spanning tree would be the network of 

roads that connects all cities for the lowest total cost.  

It is important to note that the minimum spanning tree of a graph is not necessarily unique – 

there can be more than one spanning tree tying for the same minimum total weight if the graph 

has multiple edges with equal weights. However, if all edge weights are distinct (no ties), then 

there will be exactly one unique minimum spanning tree for the graph (Kruskal, 1956). Finding 

an MST is a classic optimization problem, and many algorithms have been developed to solve it 

efficiently. Next, we describe two primary algorithms for constructing an MST, known for their 

greedy strategy (they build the solution step by step, always choosing the next optimum local 

step): Prim’s algorithm and Kruskal’s algorithm.  

Prim’s Algorithm  

Prim’s algorithm is a greedy method that builds a minimum spanning tree by expanding outward 

from a starting vertex. The idea is to grow a single tree by always adding the least expensive 

edge that connects a vertex in the current tree to a vertex outside the tree, until all vertices are 

included. This approach was originally discovered by Vojtěch Jarník in 1930 and later 

independently by Robert Prim in 1957 (Graham & Hell, 1985). It is commonly known simply as 

Prim’s algorithm. We will explain Prim’s algorithm in a step-by-step manner:  

1. Start with an arbitrary vertex: Begin with an empty set of edges and pick any one 

vertex to start the tree. At the start, the spanning tree consists of just this single vertex and 

no edges. (Because a single vertex by itself has no connecting edges yet, it is trivially a 

tree on its own.)  

2. Find the smallest edge from the tree to a new vertex: Look at all the edges that connect 

the vertices already in the tree to those vertices not yet in the tree. Out of all these 

candidate edges, find the one with the smallest weight (the least cost). Because the tree 

initially has only one vertex, this step will simply pick the shortest edge emanating from 

that starting vertex to any other vertex.  



3. Add the smallest edge to the tree: Take the minimum-weight edge identified in the 

previous step and include it in the spanning tree. This will bring one new vertex (the one 

that was connected by that edge) into the tree. Now the spanning tree has one more vertex 

than before, and one edge connecting that new vertex to the rest of the tree.  

4. Repeat the process: Now that the tree has grown, repeat the selection process. At each 

iteration, consider all edges that connect any vertex in the current tree to any vertex 

outside the current tree. Again, choose the edge with the smallest weight among these. 

Add that edge and the new vertex it leads to into the spanning tree. Ensure that no cycles 

are formed – by always connecting to a vertex that was previously “outside” the tree, 

Prim’s algorithm inherently avoids creating cycles.  

5. Continue until spanning tree is complete: Keep repeating step 4 until all vertices are 

included in the spanning tree. When the algorithm terminates, we will have added N1 

edges for N vertices, and all vertices will be connected in a tree structure.  

Kruskal’s Algorithm  

Kruskal’s algorithm is another greedy strategy for finding a minimum spanning tree, but it 

operates in a different manner. Instead of growing a single tree from a starting vertex, Kruskal’s 

method builds the spanning tree gradually by considering all the edges in order of increasing 

weight and choosing the cheapest edges that do not form a cycle. This algorithm was introduced 

by Joseph Kruskal in 1956 and has since become a standard approach to the MST problem 

(Kruskal, 1956). The outline of Kruskal’s algorithm in plain English is as follows:  

1. Sort all edges by weight: Begin by examining all the edges in the graph and sorting them 

from the smallest weight to the largest weight. This gives an ordered list of candidate 

edges, starting with the most inexpensive connections.  

2. Start with an empty edge set: Initially, the spanning tree is empty – no edges have been 

chosen yet. We will gradually add edges from the sorted list to this set, making sure we 

never form a cycle.  

3. Add edges in increasing order: Iterate through the sorted list of edges, from lowest 

weight to highest:  

o For each edge, check if including that edge in the current set would create a cycle 

among the vertices that are already connected by the chosen edges.  

o If adding the edge does not form a cycle, accept this edge and add it to the 

spanning tree. If adding the edge would form a cycle, then skip this edge (do not 

add it), because including it would violate the tree structure.  

4. Use a union-find structure to detect cycles (conceptually): As we add edges, we keep 

track of which vertices are connected together. One efficient way to do this in practice is 

by using a disjoint set union–find data structure, which can quickly tell whether two 

vertices are already in the same connected component (Cormen et al., 2009). In simple 

terms, the algorithm keeps track of groups of vertices that are connected by the chosen 

edges so far. When considering a new edge, we can determine if its two endpoints are 

already connected indirectly through the existing chosen edges. If they are, then adding 

this edge would create a loop. If they are not, the edge is safe to add.  



5. Continue until spanning tree is complete: Continue scanning through the sorted edges, 

adding those that are safe (non-cycling). Eventually, once we have added enough edges 

such that all vertices are connected, the process stops. At that point, we will have a 

spanning tree. Just like before, for N vertices we will stop when we have N-1 edges 

chosen. Any remaining edges (usually the heavier ones or those creating cycles) can be 

disregarded.  

By the end of Kruskal’s algorithm, we have built a minimum spanning tree by always taking the 

next smallest edge that does not violate the tree conditions. The greedy choice at each step 

(taking the next smallest possible connection) is guaranteed to produce an MST due to the cut 

and cycle properties of spanning trees (Kruskal, 1956). In essence, Kruskal’s algorithm exploits 

the fact that any valid MST must include the lightest edge connecting any partition of the 

vertices; conversely, a heaviest edge in a cycle can never be in the MST. Thus, by always 

choosing the globally smallest remaining edge and avoiding cycles, Kruskal’s method ensures an 

optimal result.  

In summary, Prim’s and Kruskal’s algorithms both find the minimum spanning tree by a series of 

greedy steps, but Prim’s builds from a single starting point and grows a tree, while Kruskal’s 

picks edges in global sorted order and builds a forest that eventually becomes a single tree. Both 

will be illustrated in the following case study.  

Case Study: Example Construction of an MST  

To better understand how Prim’s and Kruskal’s algorithms work in practice, let us consider a 

concrete example. Imagine we have a small network (graph) of five locations labeled A, B, C, D, 

and E. Suppose these locations are connected by roads with varying distances (or costs). We will 

describe the graph by listing the connections and their weights:  

• A is connected to B with a road of cost 3.  

• A is connected to C with a road of cost 1.  

• A is connected to D with a road of cost 4.  

• B is connected to C with a road of cost 2.  

• B is connected to D with a road of cost 5.  

• B is connected to E with a road of cost 6.  

• D is connected to E with a road of cost 8.  

  



Figure 1 shows a diagram 

of this weighted graph with 

all five vertices and the 

seven edges connecting 

them (with the numbers 

indicating the weight or cost 

of each edge).  

  

  

Our goal is to find the 

minimum spanning tree of  

this graph – that is, to 

select the subset of these roads that connects all five locations with the smallest total cost. We 

will apply Prim’s algorithm and Kruskal’s algorithm to this graph step by step, and verify that 

both methods arrive at the same final MST (as they should).  

Prim’s Algorithm on the Example:  

Step  Edge Weight  Tree Vertices After Step  Total Weight  

0 – Start  Start at A  {A}  0  

1  A – C (1)  {A, C}  1  

2  C – B (2)  {A, B, C}  3  

3  A – D (4)  {A, B, C, D}  7  

4  B – E (6)  {A, B, C, D}  13  

  

Prim’s algorithm has now finished, producing a spanning tree with edges {A–C, B–C, A–D, B– 

E}. It is easy to verify that this is indeed a tree (it connects all vertices and has no cycles) and 

that its total cost is 13. We should also check that this is minimum – there is no other way to 

connect all five vertices with a total cost less than 13. If we inspect the chosen edges, we see that 

at each step Prim’s algorithm picked the smallest possible connecting edge, and it avoided 

adding the edges A–B and B–D because at the moments they were considered, those edges 

would have connected vertices that were already indirectly connected in the tree (which would 

have created a cycle). The final set of edges is the result of this greedy growth process.  

Kruskal’s Algorithm on the Example:  

Now, let us apply Kruskal’s algorithm to the same graph and see how the edges are selected in 

increasing order of weight:  



•  Sorting edges by weight: First, list all the edges with their costs and sort them from 

smallest to largest:  

1. A–C (cost 1) – smallest  

2. B–C (cost 2)  

3. A–B (cost 3)  

4. A–D (cost 4)  

5. B–D (cost 5)  

6. B–E (cost 6)  

7. D–E (cost 8) – largest  

Step  Edge 

Weight  

Action  Edge Set   Running Total Cost  

0 – Start  Start   N/A  N/A  0  

1  A – C (1)  Add  {A – C}  1  

2  B – C (2)  Add  {A – C, B – C}  3  

3  A – B (3)  Skip (would 

form cycle A –  

B – C – A)  

{A – C, B – C}  3  

4  A – D (4)  Add  {A – C, B – C, A – 

D}  

7  

5  B – D (5)  Skip (Cycle)  {A – C, B – C, A – 

D}  

7  

6  B – E (6)  Add  {A – C, B – C, A – 

D, B – E}  

13  

7  D – E (8)  Skip (Tree 

already 

completed)  

{A – C, B – C, A – 

D, B – E}  

13  

  

  



Figure 2 demonstrates that 

both algorithms, Prim’s and 

Kruskal’s, arrive at the 

same minimum spanning 

tree for the example graph, 

albeit through different 

processes.   

  

  

Prim’s algorithm added 

edges one by one by 

always extending the 

current tree with the 

cheapest outgoing edge, while Kruskal’s algorithm picked edges in a global sorted order and 

avoided cycles. The final MST includes the connections from A to C, C to B (connecting A–B–C 

in a triangle but we exclude the heavier A–B edge), plus the connections from A to D and from B 

to E. Any other combination of roads connecting all cities would have equal or higher total cost 

than these selected ones. This example validates the correctness of both algorithms and provides 

a clear, step-by-step narrative of how each operates without the need for complex notation.  

Warehouse Case Study  

In a warehouse case study, Prim’s minimum spanning tree (MST) algorithm was applied to 

design optimal picking routes connecting all required pick locations with the shortest possible 

total distance. By eliminating unnecessary travel through a minimal spanning network, the 

distance that order-picking trucks needed to drive was drastically reduced (e.g., a drop of 466 

meters, from 693.3 m to 227.2 m, in one optimized picking round). This ~67% reduction in travel 

distance translated directly into faster picking times and lower energy consumption for the 

electric forklifts. Consequently, the optimized MST routes cut greenhouse gas emissions 

significantly – the case study reported an avoidance of approximately 234 kg of CO₂ for the 

consolidated picking scenario. In summary, using Prim’s MST to streamline warehouse picking 

paths yielded substantial improvements in operational efficiency (shorter routes and times) while 

reducing energy usage and emissions, supporting more sustainable warehouse operations.   

  

Conclusion  

Minimum spanning trees are a fundamental concept in graph theory and have proven to be vitally 

important for efficient network design. They ensure that all required nodes are connected with 

the smallest possible total connection cost or distance, making them highly valuable for solving 

real-world infrastructure problems. Effective greedy algorithms such as Prim’s and Kruskal’s 



enable rapid computation of MSTs even for large graphs, each finding an optimal spanning 

network in roughly $O(E \log V)$ time. By using these algorithms, planners can obtain minimal-

connectivity solutions that avoid wasteful routes or links. The case studies and examples 

discussed demonstrate that MST-based strategies consistently reduce costs and often decrease 

environmental impact across diverse domains – from optimizing warehouse pick paths to 

designing telecommunications, transportation, logistics, and utility networks. In summary, 

minimum spanning trees provide a powerful, concise framework for building efficient and 

sustainable connectivity in complex systems, combining theoretical optimality with tangible 

business and environmental benefits.  

  

  


